

MMR Technology and End Use Applications Foresight Nuclear Summit 2023 Mark Davies

November 2023

Ultra Safe Nuclear Business Operations

Ultra Safe Nuclear is headquartered in the US with 300+ employees in multiple countries, including Canada, UK, France, Poland, Finland, South Africa, South Korea and Australia.

Gen-IV Micro-ModularTM Reactor (MMR[®])

Micro-Modular Reactor (MMR) Overview

USNC will manufacture the MMR Microreactor Unit within the MMR Energy Systems.

Micro Modular Reactor Plant Layout and Key Benefits

Design

MMRs are Safe and can be Sited anywhere

Modular design facilitates factory assembly, short on-site construction periods, both of which delivers low energy costs with long-term predictability

Up to 40-year plant life with ~3- to 30-year refueling period

Scalable and Flexible

Scalable Flexible Configurations to serve any customer

Easy to Assemble

Modules are transported and assembled on site

Units are tested in approved factory before delivery

Standardized factory-produced units drives steep cost reductions

Easy to Decommission

- Exceedingly low likelihood of environmental contamination
- Site is returned to green field after operations
- Fission products contained in FCM

End Use Applications

© USNC 2023

Ultra Safe Nuclear: High-Temperature Industrial Process Heat and Power Applications

MMR Nuclear Batteries are small, safe, reliable high temperature gas reactors (HTGR) producing zero-carbon heat behind the fence for industrial applications and drop-in combined heat and power generation.

Hydrogen Markets and Roadmaps:

Nuclear Hybrid Hydrogen Generation

Summary of Nuclear Hybrid Energy Systems (NHES) technologies:

	Electrolysis			Thermochemical			Hybrid	
	Alkaline	PEM	SOEC	SMR	S-I	Ca-Br	HyS	Cu-Cl
Temperature	20-80°C	20-200°C	500-1000°C	870°C	800-950°C	760°C	910°C	550°C
Electrical Consumption per kg H ₂	~50 kWe	~57 kWe	~40.7 kWe	~0.4 kWe	~20 kWe	~7 kWe	~20 kWe	~19 kWe
Thermal Consumption per kg H ₂	~7.5 kWt	~7 kWt	~8 kWt	NA	~97 kWt	~84 kWt	~70 kWt	~44 kWt
TRL	9	6-8	5	9	4	3	3-4	< 3

Pinsky, R. et al. (2020) 'Comparative review of hydrogen production technologies for nuclear hybrid energy systems', Progress in Nuclear Energy, 123(March), p. 103317. doi: 10.1016/j.pnucene.2020.103317.

Gen-IV Micro Modular Reactor Projects

© USNC 2023

Domestic and International Deployment Projects

USNC has a robust pipeline of energy projects with deliveries worldwide. These are a sample of those publicly announced to date.

Zoom into Chalk River: Active Deployment in Canada

Ultra Safe Nuclear is deploying its first commercial demonstration project in Canada. The Chalk River project is expected to be operated by a 50/50 JV held by USNC and Ontario Power Generation ("OPG"), the largest Canadian utility and nuclear operator.

Parties Involved

Overview

Key Info

Key

- Number of MMR Units: 1
- Capacity: Full size battery (15.7B kWh)
- Power: Up to 45 MWt (15 MWe)
- Reactor Type: High temperature gas-cooled reactor ("HTGR")
- Demonstrate the benefits and viability of carbon-free MMR⁽¹⁾ nuclear battery (global market)
- **Objectives** Power plant for remote site mining and off-grid use (Canadian market)
 - Provide a local clean energy supply

Zoom into University of Illinois (UIUC): Active Deployment in the U.S.

Ultra Safe Nuclear is currently developing a 5 MWe project at University of Illinois. The UIUC project aims to demonstrate how Micro-Modular Reactor (MMR) systems can integrate with existing fossil fuel infrastructure.

Parties Involved

Overview

Key

Objectives

- Number of MMR Units: 1
- Capacity: Full size battery (15.7B kWh)
- **Key Info Power**: Up to 45 MWt
 - **Reactor Type:** High temperature gas-cooled reactor ("HTGR")
 - Partially replace heat from the University's power station to provide carbon-free district heating
 - Demonstrate how MMR systems can integrate with existing fossil fuel infrastructure

UK AMR RD&D FEED Study: MMR 3 Programme

Major Objectives of DESNZ AMR RD&D Programme

Overarching aim is to support the development and demonstration of HTGR technology with the capability to make a significant contribution to UK Government's commitment to Net Zero CO2 emissions by 2050:

- HTGRs seen as potential solution to difficult to decarbonise industrial process heat sector but UK Government's view is that there are market barriers preventing deployment
- Objective is to support the fast-track design and build of a UK demonstration plant by early 2030s to reduce perceived risks and facilitate large commercial scale deployment before 2050

3 Phase Programme:

- Phase A Concept and Solution Development
- Phase B Front End Engineering Design (FEED)
- Phase C Detailed Design and Construction of Demonstration Plant

DESNZ AMR RD&D Programme Phase B : USNC MMR 3

- USNC is one of two successful bidders for Phase B USNC will provide £22.5 of matched funding to support the 20-month programme to:
 - Develop a FEED design that is ready to enter Generic Design Assessment (GDA) by UK regulators
 - Develop the business case for the construction of a demonstration plant
- USNC will work with UK supply chain partners, including our principal sub-contractor Jacobs with whom we have sept up an Integrated Project Team, to deliver our "next generation" MMR
 - Increased Reactor Outlet Temperature 750°C +
 - Increased Reactor Power 60 MWt
 - High Temperature Offtake
 - Retain flexibility of existing solar salt system for heat storage at 580°C

Summary

- TRISO fuel is a robust and proven fuel
- MMR technology is ready for deployment
- Large addressable market in the UK for process heat
 and synthetic fuels production
- USNC UK through DESNZ UK AMR programme are planning to deliver a higher ROT/higher Power MMR demonstrator by early 2030s

Foresight Nuclear Summit 2023

